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A STUDY OF PENALTY ELEMENTS FOR 
INCOMPRESSIBLE LAMINAR FLOWS 

GOURI DHATT* AND GUY HUBERTt 
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SUMMARY 

A finite element model is developed based on the penalty formulation to study incompressible laminar 
flows. The study includes a number of new quadrilateral and triangular elements for 2-dimensional flows 
and a number of new hexahedral and tetrahedral elements for 3-dimensional flows. All elements employ 
continuous velocity approximations and discontinuous pressure approximations respecting the LBB 
condition of numerical instability. An incremental Newton-Raphson method coupled with the Broyden 
method is used to solve the non-linear equations. Several numerical examples (colliding flow, cavity flow, 
etc.) are presented to assess the efficiency of elements. 

INTRODUCTION 

A large number of research groups from universities and industry alike are actively involved 
with the development of finite element codes for solving incompressible viscous flow problems. 
In order to solve effectively real life turbulent flow, it is essential to develop efficient numerical 
solvers for laminar problems, which is in effect the purpose of the present study. The main 
difficulties in solving such flows via finite elements lie in proper choice of a variational model, 
proper choice of finite element approximations taking into account the incompressibility 
constraint, and the choice of a solution strategy for solving highly non-linear large systems of 
equations. 

The mathematical formulation of the problem is based on the Navier-Stokes equations 
employing the primitive variables, velocity and pressure, along with the incompressibility 
constraint. The finite element model is obtained through the weighted residual method employing 
Galerkin type weighting functions.' One type of finite element discretization employs the Co 
pressure approximation (continuous) which has been the object of earlier finite element 
appIicatiom2 - The other type employs discontinuous local pressure approximation using a 
variational penalty m0de1 .~ -~  In our study, we are particularly interested in the penalty formula- 
tion employing a discontinuous pressure approximation, since it leads to a better conditioning 
of the discretized system and a reduced number of degrees of freedom containing only velocity 
variables as unknowns, the pressure variables being eliminated at the element level through 
static condensation. 

The finite element discretization of incompressible models requires that the approximations 
for velocity and pressure (continuous or local) should satisfy certain consistency conditions in 
order to obtain convergent stable solutions. The recent works of Ladyszenskaya," Brezzi' ' 
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and Babuska12 (LBB) permit us to define the consistency conditions in a precise mathematical 
form adapted to finite element approximations. Though the mathematical form of these condi- 
tions, often known as the LBB condition, is quite straightforward, its explicit verification for 
different types of elements could be a difficult and cumbersome exercise. 

Taylor and Hood5 may be considered among the first group of researchers to employ the 
velocity-pressure (Co-approximation) formulation for solving two-dimensional laminar flows 
with quadrilateral elements. Through brutal numerical experimentation, they have identified the 
consistency condition for their model leading to a choice of bilinear pressure field (4 nodes) and 
biquadratic velocity field (9 nodes) for obtaining stable solutions. We may mention works of 
Taylor and Hood,' Malkus and Hughes3 and Cachet,* among others, which deal with the choice 
of velocity-pressure approximations (CO) for two-dimensional flows. 

The penalty formulation was first presented by Zienkiewicz' for a quadrilateral element under 
a rather restricted form of reduced integration technique. In later  work^,^,^ the penalty formulation 
was presented in a general form under the name of the consistent penalty model, where the 
pressure approximation is unrelated to the number of numerical integration points employed 
and the verification of the LBB condition is presented in an explicit manner. The penalty 
formulation with discontinuous pressure field has been the object of various recent works, 
especially by Sani et a1.,7 Oden,8 Dhatt and Hubert6 and, in free surface flows, by Zienkiewicz 
and Heinrich' and Cochet et ~ 1 . ' ~  

Oden et ~ 1 . ' ~  and ReddyI6 employ functional analysis techniques to present the penalty 
formulation in a general context along with the LBB condition. The verification of this condition 
for a given finite element approximation is a difficult and cumbersome task. In a recent article, 
Fortin' proposed a simple technique of verification for elements with discontinuous pressure 
approximation. 

The trick is to show an equivalence of the discrete version of the LBB condition for a given 
element with the continuous version, knowing that it is well respected by the continuous model. 
In the present study, we shall employ this technique to verify the LBB condition for various types of 
two- and three-dimensional elements. 

The solution strategies for solving highly non-linear equations may be classified into two 
groups. The engineering group primarily employs a version of a Newton-type method for solving 
non-linear equations. A general solution strategy based on Newton-type methods may employ 
simultaneously a Newton-Raphson incremental technique,' a quasi-Newton technique, 
especially the Broyden method,' 8-20 and certain forms of line search technique. The numeri- 
cal analysis group, mainly pioneered by Glowinski and Periaux' ' . 2 2  employs a conjugate- 
gradient technique with iterative decoupling of velocity components. The solution direction is 
predicted through a scalar Laplacian operator, employing the technique of conjugate gradients 
with a least-squares preconditioning. At present, the major problem is that of solving large 
three-dimensional problems; no clear direction has so far emerged. The present authors feel that 
an efficient three-dimensional solution technique will include simultaneously some sort of 
decomposition in space as well as in variables and a version of the Newton method along with 
conjugate gradients. However in this study, we shall be using a version of a Newton-type method 
for solving the non-linear equations. 

VARIATIONAL FORMULATION 
The Navier-Stokes equations are 

divu = ( u ~ , ~ )  = 0 
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(with summation on j =  1,2,3), 

Pli ui = uis on S, or z i j l j  - - = f i s  on S, 
P 

where 

u is the velocity vector with component u l ,  u2, u3 
z i j  are the components of the stress tensor 
p is the pressure 
v is the kinetic viscosity, may include the turbulent viscosity 
p is the mass density 

f i  is the volume force 
V is the geometrical domain limited by the boundary S, n being the normal at  the boundary 

I i  are the direction cosines of the normal n 
xl, x2, x3 are the Cartesian co-ordinates. 

The variational model is obtained by using a weighted residual method',' employing Galerkin- 
type weighting functions and performing integration by parts to reduce the maximum order of 
derivatives in the resultant expression (often called the 'weak' variational form): 

oriented towards the exterior 

1 3 

W= 1 [ ~ ~ ( u ~ u ~ , ~ ) + u ~ , ~ z ~ ~ - u ~ f ~ - - p d i v v ] d V -  uifi,dS+ qdivudV=O (2) 
y i = l  P I, Jv 

(terms are summed over j )  and u i = u i s ,  u i = O  on S, where u i , u i ~ H ' ( V )  and p,qEL2(V); H' 
represents the space of square-integrable functions such that J I  ui I 2dV, J( I dui/axj12) dV etc. < co, 
and L2 represents functions such that Jlp)'dV< 00. Note that all continuous approximations 
(Co)  belong automatically to H'; all defined discontinuous functions belong to L2. ui,p represent 
velocity and pressure fields, uir q represent corresponding weighting functions. 

For the penalty formulation, we define the incompressibility constraint (1 b) in the following 
manner: 

P 
A div u + - = 0, (3) 

where 1 is a relatively large positive scalar such that p/1 is numerically zero for all practical 
purposes. 

The ad hoc choice of equation (3) may be explained through physical as well as mathematical 
reasoning, both, in effect, expressing the same idea. We may assume that the fluid has large bulk 
modulus A developing a significant pressure field with a relatively small compressibility defined 
by div u. 

From the mathematical point of view, one can add the penalty constraint - (1/2)~,,A6(div~)~dV 
to equation (2), leading to 1 div u = - p in the sense of Lagrange multipliers, which is equivalent 
to modifying equation (2) by addition of Jv(qp/l)dV (for further details, consult Reference 16). 

Using (2), the penalty variational form is written as 

and (4) 
ui = uis,ui = 0 on S,. 
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Notice that the contour S ,  in (2) allows us to introduce the force or pressure boundary values. 
For example, on inlet, we may have dui/dn = 0, p = p, then f i ,  = - p l i / p  gives an equivalent load 
vector. 

We should also ensure that the model ( 2 )  or (4) is equivalent to ( 1 )  in the variational sense. 
Without going into details, the equivalence for Stokes’ problem (neglecting non-linear convection 
terms) is assured if the continuous version of the LBB condition is satisfied: 

[ qdivvdV 

where HA is the space of H’ functions which are zero on the boundary and 1 1 .  ( 1  is the correspond- 
ing norm. 

FINITE ELEMENT DISCRETIZATION 

Owing to the incompressibility constraint, the velocity-pressure approximation must satisfy the 
discrete LBB condition for a convergent stable solution, i.e. 

where qhruh are finite element approximations defining the spaces Qh, vh belonging to Lz ,Hl ,  
respectively. 

Experience has shown that the verification of the LBB condition in the form of equation (6) 
involves cumbersome, perhaps unnecessary, algebraic manipulations. Based on recent work of 
Fortin, we may present this condition in another form. Profiting from the fact that the variational 
model of a problem satisfies equation (9, the discrete LBB condition may be written in the 
following alternative form: 

” ” 
q,divv,dV= qhdivvdV, VqhEQh, U h E V h .  

J V  J V  
(7) 

We shall present in the following section, a number of elements, two- and three-dimensional, for 
solving Navier-Stokes equations which satisfy equation (7). 

PRESENTATION OF ELEMENTS 

Using a finite element approximation, the expression (4) becomes 

wp= 1 w;=o. 
element 

In discretized form: 

where I; is an element non-linear matrix; u,,pn are element nodal or non-nodal degrees of freedom; 
,fu is the element excitation and u,, qn are corresponding arbitrary weighting coefficients. 
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In an assembled form: 

or 
wp = (Vn ) ( CK1{ Un} - { Fn} ) = 0 

{R(U,)} = [K]{U,} - {F,} = 0, for all V,, 
where [K] is an assembled non-linear global matrix taking into account various boundary 
conditions, {F} is the corresponding load vector and U, are the global velocity unknowns, the 
pressure.coefficients being eliminated at  the element level. 

The finite element approximation is written in the following symbolic form: 

~ 1 =  (N){Uln}, 01 = ( N )  {Vln}, (1 la) 

P = (Np ) {Pn} 9 4 = (Np ) {qn}* (1 1b) 
Approximations for u,, u,; u3, u3 are similar to  (1 la). The element matrix is written as: 

[El=[ +:= -c +m/A 3 ' 
where [b] is a non-linear matrix coupling only velocity terms, 

For discontinuous pressure approximations, the penalty formulation allows us to  eliminate 
the pressure terms by static condensation and obtain an element matrix in terms of velocity 
variables only: 

[k] = [b] +L[c][m-'][cT]. (13) 
In order to present the LBB condition in terms of a matrix rank, we write the assembled 

Table I. Triangular elements (5 different elements) 

Element d.0.f. 

Symbols Nodes Velocity approximation approximation d.0.f. condensation 
Local pressure Element after 

T6C 6 Quadratic for u1,u2 Constant 13 12 
T6NC 6 Incomplete quadratic for u , ,  Constant 

u,; u, ,  u, at each corner node 
normal component at mid-side 
nodes 

10 9 

T7L plus one Quadratic plus a cubic bubble p = a, + a,[ +a,q 17 12 
internal function 
node 

T7NL 16 plus one Incomplete quadratic as Linear 
internal 
node function 

T6NC, plus a cubic bubble 
14 9 
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Table 11. Quadrilateral elements (6 different elements) 

Element d.0.f. 

Symbols Nodes Velocity approximation approximation d.0.f. condensation 

Q8C 8 Lagrange incomplete Constant 17 16 

Local pressure Element after 

Q8NC 8 Approximation uses 2 velocity Constant 
components at each corner 
node and one normal velocity 
component at each mid-side 
node 

13 12 

Q9L 8 plus one Biquadratic 
internal 
node 

Q9L 8 plus one Biquadratic 
internal 
node 

Bilinear, does not 22 16 
respect LBB condition, 
if 4 Gauss points are 
used for integration, 
identical to reduced 
integration element 
~ = a ,  + a 2 5  + a 3 v  21 16 

Q9NL 9 Approximation as Q8NC plus 
one bubble function p = a 1  + a 2 5 + a 3 r ?  17 12 

Table Ill .  Hexahedral elements (2 elements) 

Element d.0.f. 

Symbols Nodes Velocity approximation approximation d.0.f. condensation 
Local pressure Element after 

H8N 8 corner u , ,  u 2 ,  u3 at each corner node, Constant 31 30 
nodes plus 
one at six mid-face nodes 
centre of 
each face 

internal 
node 

normal component a t  other 

H27L 26 plus one Triquadratic Linear 85 78 
a ,  + a25 + a3v + a d  

version of (1 2) keeping pressure coefficients: 

In order that equation (14) leads to a numerically stable solution for U,,P,, the following 
condition should be satisfied (a version of the LBB condition): 

If r is the total number of coefficients P,, then the rank of the matrix [C] must be equal to 
(r  - 1). In other words, the matrix [C] must have ( I  - 1) independent eigenvectors or (r - 1) 
non-zero eigenvalues. It is implicitly assumed that the rank of the matrix [B] is equal to number 
of unknowns {U,}. 
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Table IV. Proposed tetrahedral elements (2 elements) 

Symbols Nodes 

T8N 4 corner 
nodes plus 

centre of 
each face 

internal 
node 

. one at 

T13L 14 plus one 

Element d.0.f. 

Velocity approximation approximation d.0.f. condensation 
Local pressure Element after 

u,, u2,  u3 at  each corner node, Constant 
normal component a t  four 
mid-face nodes 

Quadratic Linear 

17 16 

49 42 

We may remark that to verify explicitly the rank of [C] using only the elementary matrices 
[c] for a general element geometry is a highly difficult task, if not impossible. However, in certain 
cases, the use of equations (6) or (7) may lead to a simple explicit verification of the LBB condition. 

The main characteristics of the different two- and three-dimensional elements proposed are 
described in Tables I-IV. All these elements respect the LBB condition unless indicated otherwise. 

Bidimensional elements with constant pressure 

The velocity approximations for T6C and Q8C (see Tables I and 11) are standard quadratic 
and incomplete biquadratic functions.' The discontinuous pressure representation is constant 
over each element. The velocity approximations for T6NC and Q8NC, which have two velocity 
components at each corner node and a normal component at each mid-side node (Figures 1 and 2) 
are given as follows. 

8 

1 2 3  

X I ,  UI t' 3 

Figure 1. T6NC Element 

X I , U I  

Figure 2. Q8NC Element 

12 degrees of freedom 

"I I U 2  

0 un 

p = c t e  
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Table V. 

Triangle Quadrilateral 

j k m  j k m  

1 2 6  1 2 8  
3 4 2  3 4 2  
5 6 4  5 6 4  

7 8 6  

Elements T6NC and Q8NC 

U~((,Y])= (H’){u,}; (u,) = ( U ~ ” U ‘ : ’ ~ U ~ ~ ’ I * . * ) ,  
corner midside 
node node 

u2(5,Y])= ( H 2 ) h ) ?  

( H i )  = ( . . . : H i .  3 1  , H i .  ; H i , , : . . . ) ,  For each i =  1,2 
node node j = 1,3,5 for a triangular element and 

j = 1,3,5,7 for a quadrilateral element. 

corne:2 midside 

The ( H i )  functions are: 
For a corner node 

(16) 
H .  - - N ,  . + $ ( S z N k  + S:N,), 
H j z  = - $ ( C k S k N k  

H 2  J 1  = - +(ckskNk + C,S ,N, ) ,  

Hj”2 = N j  + + ( C z N k  + CiN,) .  C m S m N , ) ,  

For a mid-side node 

H j + l  = C j + l N j + l ,  H,Z+1 = S j + l N j + l .  ( 1  7) 
The values of j ,  k ,m for triangular and quadrilateral shapes are defined as on Table V. 
N i  are classical functions for the 6-node triangular element or the 8-node quadrilateral element. ’ 

The normal vector ( C k , S k )  is defined for each side of an element which is assumed straight. The 
unique u, direction of each mid-side node sharing two elements is obtained by orientating the 
corresponding side from its corner node with the lower number to the one with higher number 
and fixing the normal at - 90”. For these two elements, the matrix [m] (12c) is reduced to one term, 
and the matrix [c] to one vector. 

- 4 2 3 

14 degrees of freedom . U I  l U 2  

p -  o + b [  +cy  

- 
X I I U I  

Figure 3. T7L Element 
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Figure 4. Q9L Element 

Bidimensional elements with linear pressure 

Element T7L. The velocity approximation is defined by (Figure 3): 

18 degrees of freedom 

"I , u 2  

p = a + b <  + c ~  

N :  being the interpolation functions for a 6-node triangular element.' 

Element Q9L. The velocity is identical to the 9-node quadrilateral element' (Figure 4) and 
the pressure is defined by a local linear approximation. 

The approximations for the T7NL and Q9NL (Figures 5 and 6) elements are obtained in a 
manner similar to that employed for the elements T6NC and Q8NC with the addition of an 
internal node. 

For T7L or T7LN elements, if the generalized pressure approximation is replaced by an 

I I degrees of freedom 

UI  1"2 

0 U n  

p = a  t b t  t c 7  
I 2 

Figure 5. T7NL Element 
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14 degrees of freedom . UI  l U 2  

0 Un 

p =  a + b ( t c T  

Figure 6. Q9NL Element 

equivalent nodal approximation (Hammer integration points): 

P = NIP, + N2P* + N 3 P 3  

where 1 = 1 - 5 - q. 
The matrix [m] of equation (12c) becomes diagonal: 

[ m ] = A / 3 1  1, 
with A being the area of the element. 

If the mesh is composed of rectangular elements for Q9L or Q9LN, the [m] matrix is given by 

[m] = A  

where A is the area of the rectangle. 

Tridimensional elements 

-1 0 
0 113 i], 
0 0 1/3 

In order to solve industrial three-dimensional problems, it is essential to develop efficient and 
simple three-dimensional elements. This field is at present attracting much attention and we 
shall see in the future research studies related to choice of elements, choice of solution methods 
and the use of parallel processors for solving real-life three-dimensional problems. 

Element H 8 N .  This element (Figure 7), satisfying the LBB condition (see Appendix), was 

30 degrees of freedom 

u I  l ' 2  1'3 

0 IOCOl parameter associated 

p = cte 

with normal velocity 

Figure 7. H8N Elememt 
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recently proposed by Fortin.17 The pressure is constant over each element and the velocity 
approximation is 

241 = ( N U i ) { U }  = (Nl,.. . ,N8, O,...,O, O,...,O, N1l1,N2l29.*.9N6l6)7 
U 2  = (Nu2){U}=(o, ..., 0, N 1 ~ . . . 9 N 8 ~ o ~ . . . , o ~  Nlml,N2m2,...,m6m6), (20) 
u3 = (Nu3){u} = ( 0  ,..., 0,O ,..., 0, Nl , .  . . , N,, N,n1,m2n2 ,..., m6n6>, 

where 
8 1  8 1  ( u )  = {u}' = ( u : ,  . . . 9 u1, u2,. . . 9 u2, u3,. . .) u;,al,. . . as). 

l i ,  mi, ni are direction cosines of the normal vector of the face i. 
N 1, N,, . . . , N8 are the classical functions of the trilinear hexahedral element.' 

N,, . . . , N6 are interpolation functions associated with the local parameters ai of each face 
along the normal vector. The uniqueness of the normal direction for each face shared by two 
elements is essential. One can easily fix this direction by defining two vectors in each face, 
orientated from the lowest node number to higher node numbers. The choice of N i  is straight- 
forward, for example, N, of the face 1-2-3-4 is (1 - t2)(1 - q2)(1 - c). 

The normal components ai associated with the faces of each element cannot be removed at 
element level, owing to the sharing of each face by two elements. It is believed that this may 
lead to an undesirable size of bandwidth, and thus to an effective reduction in the numerical 
efficiency of the element. 

METHOD OF SOLUTION 

The finite element approximation leads to a discretized model of flow problems written in the 
following matrix form: 

CK(U)l{.> - {F} = 0. (21) 

Equation (21) represents a non-linear system of equations, defining either stationary flow or 
non-stationary flow, the time derivative being discretized by a variant of the implicit integration 
formulae.' 

In this study, we employ the incremental Newton method coupled with the quasi-Newton 
method of Broyden.'8-20 The solution strategy is based on the application of the Newton 
method till the norm IAuil/luil is sufficiently small, followed by the application of the Broyden 
method to obtain desired convergence accuracy. This solution strategy is incorporated in the 
general finite element code MEF.' 

NUMERICAL EXAMPLES 

We present a number of numerical examples in order to demonstrate the reliability of various 
elements for two- and three-dimensional flows. For 2-D problems, we are interested to assess 
the efficiency of a family of new penalty triangular elements discussed in the previous sections. 
The presentation of 3-D elements may be considered as exploratory, believing that this will 
orientate our research efforts for the choice of elements, and the choice of solution strategies. 
All mesh generation and graphical processing employ the interactive code MOSAIC, developed 
at the University of Compikgne, compatible with the MEF. 
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A 

3 34 

Two-dimensional problems 

B 
B N B N B N  

I I  j 106 18 1218 ~ 27 1370 

Collidingflow. We study a simple Stokes flow over a unit square domain, using T7L, T7L* 
(same as T7L, with the elimination of two internal velocity components at the element level), 
T6NC and T6-3 (quadratic velocity with linear continuous pressure2). 

The Stokes flow is defined by 

- Aui + p,i =fi i = 1,2, 
u . . = o  

u = us on all four sides, 

The exact solution of the flow is chosen as: 

1.1 3 

with 0 < x1 < 1; 0 < x2 < 1. 

u ,  = sinx,,u, = sinx,, p = sin(xl + x2), 
f l  = sinx, + cos(x, + x2), f 2  = sinx, + cos(x, + x2). 

For comparison purposes, we define the following error norms: 
We impose boundary velocity values obtained by the above equation. 

0.9 

0.7 

0.5 

0.3 

- 

- 

- 

- 

A : ( 2  x 2 ) x 2 elements 

B :  ( 4 x 4 )  x 2 elements 

C : ( 6  x 6 ) x 2 elements 

D : (8 x 8 )  x 2 elements 

-0.1 t l  p , 
- 

I I  I I I *  

-0.1 0.1 0.3 0.5 0.7 0.9 1 . 1  x, 

Elements 

- 
T6 NC 

T7L 

T7L* 

I 1 I I I I I 1 1 1 

B : Average band height for sky line storage final 
N: Number of unknowns 

Figure 8. Colliding flow mesh 
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where u1,u2 are calculated values and ue1,ue2 are exact values obtained from equation (23) and 
n is the total number of velocity unknowns. 

In a similar manner, the pressure error norm is 
n. 

E , =  i = l  , np = number of pressure components. 
nP 

Various mesh configurations and problem characteristics are given in Figure 8. The error 
norms E, ,  E ,  are given in Figures 9 and 10, respectively. The pressure and velocity accuracy of 
T7L is quite evident. 

CauityJlow. To test the relative accuracy of these elements for non-linear flows, we chose the 
classical square cavity with a recirculating flow. The velocity components are zero on all sides, 

Figure 9. Velocity error 

Element sizes 
D C  B A 

0 0.1 0.2 0.3 0.4 0.5 ( 3.5 
A T6-3 

w" 2.5 3.0- &kc I 

P 
g- 2.0 

1.5 

1.0 - 

~ 

1 

6 

Figure 10. Pressure error 
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0.7 
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0.3- 
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- 

- 

- 

- 

- 

( I O x l O )  2 =200 elements T7L 

I I , , , ,  I I 0 1 . .  . . m  
-0.1 0.1 0.3 0.5 0.7 0.9 1 . 1  

X 

Figure 11. Cavity flow: Mesh configurations 

except at the upper lid where horizontal velocity is imposed to be unity and normal velocity 
is zero. 

We observed that the T7L element leads to superior velocity and pressure estimates as compared 
with other triangular elements. In Figures 11 and 12, we present only the results obtained with 
T7L for Reynolds numbers 100 and 400. The pressure values are normalized by p = ( p -  
p(O.5,O))Re/u~,, and the stream function is normalized by IJ = $/Re. 

Three-dimensional .flow 

Poiseuilleflowfor Re = 0. We employ H8N and H8 elements for studying a simple Poiseuille 
flow between two parallel plates. The purpose of this test is to observe the influence of distortion 
of element shapes on the velocity and pressure values. One should notice that the element H8 
does not respect the LBB stability condition! The boundary conditions and the results for two 
mesh configurations are given in Figure 13. M1 is a rectangular 3 x 3 x 3 mesh and M 2  is like 
M1 but with a distortion of elements shapes produced by a 5 per cent displacement of the 
co-ordinates of the central node. One may observe from Figure 13 that there is a significant 
influence of distortion on the results of the H8 element, especially for pressure values as compared 
with the element H8N. If one employs the H8 element for 3-D studies, it is necessary to employ 
certain pressure filtering  technique^.'^ 

Three-dimensional recirculating cavityflow. A unit cavity with a sliding upper plate is studied, 
employing H8 and H8N elements. We use 224 elements with a mesh size of 8 x 7 x 4 over a 
half cavity. The boundary conditions are shown in Figure 14 and various pressure and velocity 
profiles are shown in Figure 15. The pressure is normalized as ~ = ( p - p ( O , O , O ) ) R e / u ~ , , .  The 
element employed by ReddyZ4 and H8 are identical. It seems that discrepancy of results for u2 
in Figure 15 between Reddy and ourselves is primarily due to the presentation error in Reference 
24. Since the element shape is rectangular, the velocity and pressure profiles for H8 show no 
oscillations or major errors as compared with H8N. 



-0.01 1 I 
I 

Sfreom/ines at Re = /00 Pressure /eve/ plots at Re = /00 

0 

Pressure /eve/ plots at Re = 400 Streom/ines of Re = 400 
Figure 12. Pressure and stream function values for cavity flow 

.- 

Dimensions 0 I x 1 5  t 
0 I X 2 I  I 

0 5 X35 0.5 

Boundary conditions 
x I = 0 u, = profile parabolic 

u2= u 3  0 

x l  = I uI  , u 2 ,  u3 free 

X 3  ~0.5 u I = u ~ = u ~ = O  

x 3 = 0  u 3 = o  
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CONCLUDING REMARKS 

We have presented a list of various penalty elements for two- and three-dimensional flows. 
Numerical results have been presented to test two triangular elements and two hexahedral 
elements. 

Our experience with various triangular elements proposed in this study suggests that the 
element T7L gives probably the best results, both for velocity and pressure fields. This element 
becomes very efficient if the internal velocity components are condensed at the element level. 

For three-dimensional elements, we have so far a limited experience, using only H8 and H8N 
elements for cavity flows and flows around a sphere. Our studies have shown that though H8N 
is oscillation-free, one can obtain acceptable results with the H8 element if certain pressure 
filtering is employed. Certainly, the element H8 is far simpler and more efficient numerically as 
compared with H8N. 

A major problem for three-dimensional flow studies is the choice of an efficient solution 
strategy. We have so far employed variants of the Newton method, the industrial application 
of which is not efficient, owing to large matrix sizes and the computational effort involved in 
the construction and triangularization of matrices. It seems that any practical non-linear solvers 
will eventually employ the technique of conjugate gradients, least-square conditioning and, 
necessarily, a decomposition over space and velocity components. 

At  present, we are trying to develop efficient hexahedral and tetrahedral elements respecting 
the stability conditions. The basic idea seems to be the introduction of an internal node for 
velocity components, employing a Co field for pressure. 

APPENDIX: VERIFICATION OF THE LBB CONDITION 

We shall present a simple method of verification of the LBB condition adapted to discon- 
tinuous pressure approximation. It is assumed that the variational model satisfies the LBB 
condition in continuous form: 

qdivudV 

If the finite element approximation uh defines 'continuously' the field u, (this is true for the 
type of finite element approximation employed normally), then an equivalent version of the 
discrete LBB condition is to verify the following relation: 

r r 
qhdiVUhdI/= qhdivudV, for all qhruh,u 

where qh,Uh are finite element approximations of q and u, respectively. 
J V  J Y  

For a discontinuous q h  field, equation (25) becomes 

where E is the element volume. 
We shall show how, for various types of elements presented in this study, equation (26) is verified. 



X I  0.5 : symmetry 

4 x 8 x 7 = 224 elements 

Boundary conditions 

U I  = 0 j u2= I ,u3= 0 

UI  = 0 1 u2= 0 ]U3 = 0 

on x3=  I 

on x I  = O  x 2 =  0 x 2 =  1.0 

and x j =  0 

u I  = 0 on x ,  =0.5 (symmetry) 

Figure 14. Mesh configuration and boundary conditions for cubic cavity flow 

x3 
2O 0.2 0.4 0.6 0 8 1.0 

I I 
I 1 

Cubic cavity; p f0.5,0,5, x3 ) 

U 2 ( 0.5 , X2 0.95 

Cubic cavity: u2/0.5,+,0.95) 

x 3  

I 1 
0 2  0 4  06 0 8  10 

I 1 

Cubic cavi7y : p fO.5,O. 5, x3 ) 

Figure 15. Pressure and velocity profiles for a cubic cavity 
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Elements with constant pressure 

parts ( q h  constant) 
For constant pressure elements (2-D and 3-D), equation (26) becomes, after integration by 

#- #- 

where a E  is the boundary of an element E and u, is the normal component of velocity. 

r r 
In a more restricted sense, 

UnhdS = J u,ds, J A-B A-B 

where A-B represent any side or face of an element. 
One may conclude that if an element has a normal velocity component associated with each 

face (3-D) or with each side (2-D), then equation (28) is always satisfied. For example, along a 
side of the element T6NC: 

One can locally adjust urn for any values of uA, uB, u, since the mid-side node is shared only 
by the side A-B, thus satisfying (28). A similar reasoning is applied to 3-D elements. 

Elements with linear pressure 

For 2-D elements, the linear pressure may be written as 

p = a + b t  +cq (29) 
Equation (26) should be satisfied for the terms in 5 and q and (28) for the constant term. This 

(a) a normal velocity component is associated with each side (2-D) or each face (3-D) 
(b) a node containing all velocity components is associated with the interior of an element (a 

The proof follows similar lines as for constant pressure, except that equation (26) is employed 

is possible if 

bubble function). 

to verify for terms t , ~ ,  i.e. 

where 
aN, a aN, a 

ax ax ay a Y  
A =-(N){u} +--u,+-(N){v} +---I. 

{u}; {v} contains the nodal velocity components shared by neighbouring elements, ( N )  is the 
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corresponding approximating function, N ,  is the internal bubble function associated with internal 
components uI, uI. In such a case it is always possible to choose u,, u, to satisfy these two relations. 
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